Graphs whose minimal rank is two

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Graphs Whose Minimal Rank Is Two

Let F be a field, G = (V, E) be an undirected graph on n vertices, and let S(F, G) be the set of all symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For example, if G is a path, S(F, G) consists of the symmetric irreducible tridiagonal matrices. Let mr(F, G) be the minimum rank over all matrices in S(F, G). Then mr(F, G...

متن کامل

Graphs whose minimal rank is two

Let F be a field, G = (V, E) be an undirected graph on n vertices, and let S(F,G) be the set of all symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For example, if G is a path, S(F,G) consists of the symmetric irreducible tridiagonal matrices. Let mr(F,G) be the minimum rank over all matrices in S(F,G). Then mr(F,G) = 1...

متن کامل

Graphs whose minimal rank is two: The finite fields case

Let F be a finite field, G = (V, E) be an undirected graph on n vertices, and let S(F,G) be the set of all symmetric n× n matrices over F whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let mr(F,G) be the minimum rank of all matrices in S(F,G). If F is a finite field with pt elements, p = 2, it is shown that mr(F,G) ≤ 2 if and only if the compl...

متن کامل

Ela Graphs Whose Minimal Rank Is Two: the Finite Fields Case∗

Let F be a finite field, G = (V, E) be an undirected graph on n vertices, and let S(F,G) be the set of all symmetric n× n matrices over F whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let mr(F,G) be the minimum rank of all matrices in S(F,G). If F is a finite field with pt elements, p = 2, it is shown that mr(F,G) ≤ 2 if and only if the compl...

متن کامل

Rank-two Graphs Whose C∗-algebras Are Direct Limits of Circle Algebras

We describe a class of rank-2 graphs whose C∗-algebras are AT algebras. For a subclass which we call rank-2 Bratteli diagrams, we compute the K-theory of the C∗-algebra. We identify rank-2 Bratteli diagrams whose C∗-algebras are simple and have real-rank zero, and characterise the K-invariants achieved by such algebras. We give examples of rank-2 Bratteli diagrams whose C∗-algebras contain as f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2004

ISSN: 1081-3810

DOI: 10.13001/1081-3810.1137